非接触充电系统的研究
无需注册登录,支付后按照提示操作即可获取该资料.
非接触充电系统的研究(任务书,开题报告,论文15000字)
摘要
近几年来,由接触式充电方式引起的灾害频发,传统的接触式电能传输系统的弊端显得越来越难以满足社会的发展。尤其是当接触式电能传输系统发生故障时,很可能会在供电设备和用电设备的连接处产生电火花,从而大大增加了造成操作人员受到生命威胁的可能性。因此非接触式电能传输系统的研究是具有意义和价值的。本文研究的对象是LCL型感应耦合电能传输系统(ICPT系统),其工作原理是,直流电经过全桥逆变器转化为交流电,逆变器输送出的交流电经过LCL谐振电路后到达原边线圈,根据电磁感应原理,原边线圈周围产生了交变磁场,交变磁场又会使得副边线圈产生感应电流,从而给用电设备提供电能。
ICPT系统的逆变器可以采用多种类型,比如全桥逆变电路,半桥逆变电路,自激振荡式逆变电路和推挽式逆变电路[1]。本文选择的是全桥逆变电路,因为其电路结构更为复杂,开关器件数量更多,所以能更好的适应大功率电路。ICPT系统所采用的松耦合变压器与传统的变压器不同,前者的气隙更大,因此大大降低了电能传输的效率,我们通过在电路结构中增加LCL型谐振网络来对电路进行补偿。LCL型谐振网络比普通的单边补偿与双边补偿更加复杂,它能使原边线圈上产生大的交流电,从而产生较强的交变磁场,提高传输效率,同时又能使逆变电路的开关器件不需要承受较大的电流,避免了开关器件的发热损耗。LCL型谐振电路还具有较强的容错性,即便电路中的局部发生故障也不会导致整个系统的故障,延长了电能传输系统的寿命并提高了其安全性。
本文最后利用matlab中的simulink进行了仿真实验,以研究电流增益与电能传输效率随原副边线圈互感的变化情况。当原副边互感增加时,电流增益逐渐减小并趋向于0,而电能传输效率不断增大最终趋向于1。
关键字:LCL,逆变器,补偿网络,ICPT系统,传输效率,电流增益。
Abstract
In recent years, disasters caused by contact charging methods have become more frequent. The drawbacks of traditional contact-type power transmission systems are becoming more and more difficult to meet the social development.Especially when the contact-type power transmission system fails, it is likely to generate sparks at the connection between the power supply equipment and the power equipment, thereby greatly increasing the possibility of causing life-threatening threats to the operator. Therefore, the research of non-contact power transmission system is of great significance and value. The object of this paper is the LCL type inductively coupled power transmission system (ICPT system). Its working principle is that DC power is converted into AC power through a full-bridge inverter and the AC power from the inverter reaches the primary coil after passing through the LCL resonant circuit. According to the principle of electromagnetic induction, an alternating magnetic field is generated around the primary coil, which in turn causes the secondary coil to generate an induced current, thereby providing electrical energy to the electrical equipment.
The inverters of the ICPT system can use various types, such as a full-bridge inverter circuit, a half-bridge inverter circuit, a self-oscillating inverter circuit, and a push-pull inverter circuit. In this paper, the full-bridge inverter circuit is chosen, because its circuit structure is more complex and the number of switching devices is more, so it can better adapt to high-power circuits. The loosely coupled transformer used in the ICPT system is different from the traditional transformer in that the former has a larger air gap, thereby greatly reducing the efficiency of power transmission. We compensate the circuit by adding an LCL resonant network in the circuit structure. The LCL resonant network is more complex than ordinary unilateral compensation and bilateral compensation. It can generate large alternating currents on the primary coils, resulting in a stronger alternating magnetic field, improving transmission efficiency, and at the same time enabling switching of the inverter circuit. The device does not need to withstand large currents and avoid heat loss from switching devices. The LCL type resonant circuit also has strong fault tolerance, even if a partial failure in the circuit does not cause the failure of the entire system, prolonging the life of the power transmission system and improving its safety.
In the end, this paper makes use of simulation in simulink in matlab to study the variation of current gain and power transmission efficiency with the original secondary coil mutual inductance. When the mutual inductance of the primary and secondary sides increases, the current gain first increases and then decreases, while the power transmission efficiency continuously increases tending to one.
Keywords: LCL, inverter, compensation network, ICPT system, transmission efficiency, current gain
目录
第1章 绪论 1
1.1 引言 1
1.2 课题研究的背景,目的以及意义 2
1.3 国外的研究与应用 2
1.4 国内的研究与应用 4
1.5 本文研究内容 5
第2章 ICPT系统的电路分析与设计 6
2.1 引言 6
2.2 ICPT系统特性的分析 6
2.2.1 ICPT系统结构的介绍 6
2.2.2 感应耦合电能传输系统的分类 7
2.2.3 松耦合变压器的研究 7
2.3 逆变电路分析 8
2.4 补偿网络的分析 11
2.5 LCL谐振电路 15
2.6 本文选取的主拓扑以及补偿选型 17
第3章 LCL型ICPT系统的仿真 18
3.1 引言 18
3.2 基于基波分析法的LCL型感应电能传输系统进行分析 18
第4章 实验研究 22
4.1 引言 22
4.2 实验研究 22
第5章 总结与展望 32
参考文献 33