基于FPGA的防电流电磁智能家电控制系统设计

以下是资料介绍,如需要完整的请充值下载. 本资料已审核过,确保内容和网页里介绍一致.  
无需注册登录,支付后按照提示操作即可获取该资料.
资料介绍:

基于FPGA的防电流电磁智能家电控制系统设计(论文11000字)
摘  要:智能家居作为一个新兴发展的家居产业,其一经公布就受到了人们的关注。这些智能家居旨在于能够方便人们的生活。在老龄化日益严重的现在,各种各样的老年疾病一直影响着人们的日常生活。心血管疾病作为一个老年人常发疾病一直困扰着社会。我们迫切的需要设计出一套适用于心脏病人的智能家居系统。这使得以FPGA为控制核心的智能家居睡眠系统成为可能。本文设计出了以FPGA为核心的检测电流磁场的智能家居控制系统,用以保护装有心脏起搏器的心脏病人。本次设计中决定使用兼容性好、时序性强的FPGA为控制芯片,使用合适的霍尔传感器来测量磁场和电流,当检测到电流和磁场时将发送至警报器处,以警示心脏病人注意安全,同时对有危险的家电进行断电处理。这样可以让心脏病人远离日常生活中的安全隐患,从而使他们的生命得到保障。
关键词:FPGA、心血管疾病、智能家居、传感器

Control System Of Current - proof Electromagnetic Intelligent Home Appliance Based On FPGA
Abstract:As a newly developed home furnishing industry, smart home furnishing has attracted people's attention once it is published.These smart homes are designed to be convenient for people's lives and to solve some functions that people are inconvenient to perform.In the increasingly serious aging now, a variety of diseases of old age has been affecting the daily life of these people.Cardiovascular disease as a common disease of the elderly has been troubling the society.We urgently need to design a smart home system for heart patients.This makes the smart home sleep system with FPGA as the core of control possible.This paper introduces a practical FPGA, and introduces a variety of methods for measuring current and magnetic field, and designs a set of intelligent home control system based on FPGA to detect current and magnetic field.In this design, the FPGA with good compatibility and strong timing sequence is used as the control chip. Appropriate hall sensor is used to design the sensor for measuring magnetic field and current. When the current and magnetic field are detected, the signal will be sent back to the FPGA, so that the corresponding FPGA can realize LED alarm and relay switch to disconnect the household appliance switch.This keeps heart patients safe from everyday dangers and keeps their lives safe.
Key words:  FPGA ; Cardiovascular disease ; Smart home ; The sensor
 

基于FPGA的防电流电磁智能家电控制系统设计


目录
第1章 绪论    4
1.1 研究背景及意义    4
1.2 国外研究现状    4
1.3 国内研究现状    5
1.4 研究主题内容    5
第2章 系统设计方案和硬件选取    6
2.1 系统总体设计    6
2.2 系统框架设计    6
第3章 系统硬件设计    8
3.1 FPGA开发板    8
3.2 电流传感器    8
3.3磁场传感器    10
3.4 蓝牙模块    12
3.5 继电器模块    12
第4章 系统软件介绍    13
4.1 开发环境介绍    13
4.1.1 Quartus II开发环境    13
4.1.2 硬件描述语言    14
4.1.3 IP核介绍    14
4.2蓝牙串口设计    14
4.3电流电磁测量模块    15
4.4报警处理模块    16
第5章 系统调试    16
5.1 Modelsim仿真    16
5.2电流测试模块测试    17
5.2磁场测量模块测试    18
5.3整体功能测试    18
结论    20
参考文献    21
致谢    23