基于ADP与MCTS算法的五子棋

以下是资料介绍,如需要完整的请充值下载. 本资料已审核过,确保内容和网页里介绍一致.  
无需注册登录,支付后按照提示操作即可获取该资料.
资料介绍:

基于ADP与MCTS算法的五子棋(中文7900字,英文PDF)
摘要
受AlphaGo核心思想的启发,我们将自适应动态规划(ADP)方法训练的神经网络与运用于五子棋的蒙特卡罗树搜索(MCTS)算法相结合。MCTS算法基于蒙特卡罗模拟方法,经过大量模拟并生成游戏搜索树。 我们展开该树并搜索其中叶节点的结果。结果,我们获得了MCTS获胜率。ADP和MCTS方法分别用于估算获胜率。我们对这两个中奖率进行加权,以选择最大一个的作用位置。实验结果表明,该方法可以有效地消除神经网络评价函数的“短视”缺陷。使用我们提出的方法,游戏的最终预测结果更准确,并且它优于基于ADP算法的五子棋。
关键词:自适应动态规划; 蒙特卡洛树搜索;五子棋
 

基于ADP与MCTS算法的五子棋