无监督代表学习深卷积的生成对抗网络

以下是资料介绍,如需要完整的请充值下载. 本资料已审核过,确保内容和网页里介绍一致.  
无需注册登录,支付后按照提示操作即可获取该资料.
资料介绍:

无监督代表学习深卷积的生成对抗网络(中文7000字,英文PDF)
摘要
近年来,卷积网络的监督学习已经在计算机视觉应用中被广泛采用。相对而言,无监督使用CNN学习受到的关注较少。在这项工作中,我们希望能有所帮助弥合CNN在监督学习和非监督学习中的成功。我们引入一类称为深卷积生成的CNN。具有一定架构限制的对抗性网络(dcgan),以及证明他们是无监督学习的有力候选人。训练在各种图像数据集上,我们展示了令人信服的证据,证明我们的深卷积对手对从对象部分到生成器和鉴别器中的场景。此外,我们还使用新任务的特征-证明其作为一般图像表示的适用性。
 

无监督代表学习深卷积的生成对抗网络