基于感知损失函数的实时风格转换和超分辨率重建

以下是资料介绍,如需要完整的请充值下载. 本资料已审核过,确保内容和网页里介绍一致.  
无需注册登录,支付后按照提示操作即可获取该资料.
资料介绍:

基于感知损失函数的实时风格转换和超分辨率重建(中文9000字,英文PDF)
摘要:我们考虑的图像转换的问题,即将一个输入图像变换成一个输出图像。最近热门的图像转换的方法通常是训练前馈卷积神经网络,将输出图像与原本图像的逐像素差距作为损失函数。并行的工作表明,高质量的图像可以通过用预训练好的网络提取高级特征、定义并优化感知损失函数来产生。我们组合了一下这两种方法各自的优势,提出采用感知损失函数训练前馈网络进行图像转换的任务。本文给出了图像风格化的结果,训练一个前馈网络去解决实时优化问题(Gatys等人提出的),和基于有优化的方法对比,我们的网络产生质量相当的结果,却能做到三个数量级的提速。我们还实验了单图的超分辨率重建,同样采用感知损失函数来代替求逐像素差距的损失函数。