金属板料的成形及冲裁

以下是资料介绍,如需要完整的请充值下载. 本资料已审核过,确保内容和网页里介绍一致.  
无需注册登录,支付后按照提示操作即可获取该资料.
资料介绍:

中文译文
4 金属板料的成形及冲裁(中文3100,英文1700字)
4. 模具制造原理
4.1.1模具的分类
在金属成形的过程中,工件的几何形状完全或部分建立在模具几何形状的基础上的。与机械加工相比,在成形时明显更大的压力是必要的。由于零件的复杂性,往往不是只进行一次操作就能成形的。根据零件的几何形状,通过由一个或几个生产过程例如成形或冲裁的几个操作步骤进行生产。一个操作也可以同时完成几个过程。
   在设计阶段,合理的生产步骤、生产次序以及生产工序数都由生产计划来决定(如图4.1.1)。在这个计划中,应该对机器的可利用性、零件的计划生产量和其他限制条件予以考虑。
其目的是在保证高水平的操作可靠性的同时最大限度地减少需要使用的模具数量。通过部件设计部和生产部之间的紧密合作促使几个成形和有关的冲裁过程能在一个成形操作中完成,如此一来,仅仅在设计阶段就可以大大地简化部件。
显然,越是更多的操作集成到一个单独的模具上,模具结构就必然更为复杂。其后果是成本较高、产量下降和可靠性较低。

英文原文
4 Sheet metal forming and blanking
4.1 Principles of die manufacture
4.1.1 Classification of dies
In metalforming,the geometry of the workpiece is established entirely or partially by the geometry of the die.In contrast to machining processes,ignificantly greater forces are necessary in forming.Due to the complexity of the parts,forming is often not carried out in a single operation.Depending on the geometry of the part,production is carried out in several operational steps via one or several production processes such as forming or blanking.One operation can also include several processes simultaneously(cf.Sect.2.1.4).
During the design phase,the necessary manufacturing methods as well as the sequence and number of production steps are established in a processing plan(Fig.4.1.1).In this plan,the availability of machines,the planned production volumes of the part and other boundary conditions are taken into account.
The aim is to minimize the number of dies to be used while keeping up a high level of operational reliability.The parts are greatly simplified right from their design stage by close collaboration between the Part Design and Production Departments in order to enable several forming and related blanking processes to be carried out in one forming station.
Obviously,the more operations which are integrated into a single die,the more complex the structure of the die becomes.The consequences are higher costs,a decrease in output and a lower reliability.