基于高铁白车身机器人加工的高效智能腻子打磨头设计

以下是资料介绍,如需要完整的请充值下载. 本资料已审核过,确保内容和网页里介绍一致.  
无需注册登录,支付后按照提示操作即可获取该资料.
资料介绍:

基于高铁白车身机器人加工的高效智能腻子打磨头设计(任务书,开题报告,外文翻译,论文说明书23000字,PDF图纸8张)
摘要
腻子打磨是高铁白车身生产制造过程中的核心工艺之一,其打磨效率及质量直接影响高铁车身涂装等后续工序。然而,当前国内高铁生产企业仍多采用人工进行腻子打磨作业,继而导致了打磨效率低、质量不稳定、加工环境恶劣等普遍问题。本课题采用工业机器人代替传统人工作业方式,基于其高重复定位精度、高柔性、智能化等特点,为高铁白车身高效精密腻子打磨加工提供一种新思路。
将机器人应用于腻子打磨作业,需要设计一款与腻子打磨加工特点相适应的机器人末端执行装置。本文结合国内外机器人磨抛技术与白车身腻子打磨工艺研究现状,提出了一款新型高铁白车身机器人腻子打磨头的设计方案。该打磨头同时集成有转速控制与力控制功能,使打磨过程中影响表面加工质量的工艺参数变得稳定可控,可有效提高高铁白车身腻子打磨加工效率与质量。
在打磨头机械结构设计方面,本文首先分析了腻子打磨对机器人末端装置结构功能的需求,继而针对腻子打磨特点,确定了打磨工具的盘式结构,并选择了变频电机作为打磨头的驱动装置。在此基础上,完成了包括传动部件、支承部件、机器人连接部件等的打磨头整体结构设计。
在打磨头电气系统设计环节,提出了基于PLC、变频器与变频电机的两种转速控制模式。在模式1中,通过控制变频器对变频电机输出一恒定频率的电流,来确定电机转速并使其以该转速恒速运转;而在模式2中,考虑到了电机转差率的影响,采用旋转编码器对电机转速实时采样并反馈至PLC中,实现了恒定打磨转速的负反馈控制。在此基础上,完成了打磨头电气系统主电路、控制电路、PLC控制程序以及电气控制柜的设计。
在机器人离线编程环节,于ABB机器人仿真软件RobotStudio中构建了机器人高铁白车身腻子打磨工作站模型。将所设计的打磨头三维模型导入工作站后,利用PowerPac Machining插件完成了机器人加工轨迹规划以及部分运动参数的设置。为实现对打磨正压力的恒力控制,使用ATI六维力/力矩传感器对打磨力进行监测,并通过RAPID程序中的力控制指令控制机器人对比打磨正压力测量值与设定值,从而在打磨过程中对加工路径进行实时微调,实现打磨正压力的恒定。   
最后,根据设计方案制作出打磨头实物模型,展开工艺验证。工艺验证主要包括三项内容,即打磨效果验证、转速控制试验验证,以及力控制试验验证。经过打磨试验与数据分析,验证了所设计机器人打磨头的有效性。
关键词:腻子打磨,转速控制,力控制,机器人磨抛,离线编程

Abstract
Putty grinding is one of the essential procedures in high-speed train body-in-white manufacturing, which has a major impact on the following paintingprocesses. So far, the work of putty grinding is still mainly undertaken by human workers. Consequently, that leads to many common problems, such as low efficiency, unstable quality and hazardous working conditions. Based on the advantages including high repeatability, flexibility and intelligence, this project utilizes industrial robotsto replace human workersin high-speed train body-in-white manufacturing, providing a new solution for the problems above.
To apply robots in putty grinding, a robot end effector that suits the features of the grinding task is needed. Based on foreign and domestic current researches on robot polishing and putty grinding, this paper proposes a design of a novel robot grinding device used in high-speed train body-in-white putty grinding. The function of speed control and force control has been integrated in this new device, which makes the factors affecting grinding quality becomes controllable. Therefore, the grinding quality and efficiency could be improved.
In the part of mechanical design, firstly, the needs of structural function are discussed. In the light of the characteristics of putty grinding, a pad structure of grinding tool is devised, and a variable frequency motor is chosen as the drive device. On the base of that, anentire design of therobot grinder’s structure including spindle, supporting parts, flanges and the likes is carried out.
In the part of electrical design, this paper proposes two speed control modes based on PLC, VFD and variable frequency motor. In mode 1, the motor speed is decided by the output frequency of the VFD and hence stays constant. In mode 2, motor slip is taken into consideration. A rotary encoder is implemented to collect the motor’s real speed and feed back to PLC, where the real speed is compared with set speed. If the real speed is lower than the set speed, then PLC will command VFD to raise the output frequency to increase motor speed, and vice versa. In addition, in this part, the main circuit, control circuit, PLC program and distribution cabinet are designed as well.
In the part of robot off-line programming, this paper builds the robot grinding studio in ABB’s simulation software RobotStudio. The model of the designed robot grinder being imported to the studio, robot trajectory design and motion parameters set are completed with add-in unit PowerPac Machining. To realize robot constant-forcegrinding, anATI six-axis force/torque sensor is used to monitor normal grinding force as feedback to the robot controller. Thus the robot can adjust its trajectory to meet the force control requirement.
Finally, a model robot grinder of the design above is built tocarry out experiments. The experiments mainly consists of three parts: speed control test, force control test and grinding test. With the experiments results and experimental data analysis, the effectiveness of the proposed design is verified.
Keywords:Putty Grinding, Speed Control, Force Control,Robot Grinding, Off-Line Programming

目录
摘  要    I
Abstract    II
第1章 绪论    1
1.1 课题来源    1
1.2选题背景及研究意义    1
1.3 国内外研究概况    2
1.3.1机器人磨抛技术现状    2
1.3.2机器人打磨控制技术现状    3
1.3.3白车身腻子打磨技术现状    3
1.4存在的问题和解决方案    4
1.4本文主要研究内容    4
第2章 打磨头机械结构设计    6
2.1 打磨头结构功能需求分析    6
2.2 机械结构核心部件设计    7
2.2.1 打磨工具结构设计    7
2.2.2 驱动马达选型    8
2.3 打磨头整体机械结构设计    9
2.4 打磨头机械结构有限元分析    11
2.5 本章小结    13
第3章 打磨头电气系统及转速控制方案设计    14
3.1 打磨头电气功能需求分析    14
3.2 打磨转速控制方案设计    14
3.3 主电路设计    17
3.4 控制电路设计    18
3.4.1 PLC控制单元选型    18
3.4.2 变频器工作模式及参数设计    19
3.4.3 PLC I/O端子分配与接线    21
3.5 PLC控制程序设计    22
3.6 电气控制柜设计    26
3.7 本章小结    27
第4章 机器人离线编程及力控制方案设计    28
4.1 机器人仿真工作站构建    28
4.2 机器人路径规划    29
4.3机器人力控制方案设计及编程    30
4.4 机器人运动仿真    31
4.5 本章小结    32
第5章 高铁白车身侧墙打磨试验验证    33
5.1打磨效果验证    33
5.2 转速控制试验验证    34
5.3 力控制试验验证    35
5.4 本章小结    36
第6章 总结与展望    37
6.1 全文总结    37
6.2 工作展望    38
参考文献    39
附录    41
附录A PLC控制梯形图程序    41
附录B 机器人控制RAPID程序(部分)    43
附录C 取得的相关成果    45
致谢    46