异步电机全阶磁链观测器的设计分析及其应用研究
无需注册登录,支付后按照提示操作即可获取该资料.
异步电机全阶磁链观测器的设计分析及其应用研究(论文11000字)
摘 要
异步电机先前的V/F控制法由于他的容易实现、机理简易,鲁棒性强,可是异步电机在低转动速度区域具有一些例如带载能力变弱、动态响应变慢、转动速度精度变低等问题[1]。无速度传感器矢量控制技术的最重要问题是对电机磁链的观测,标量控制与无速度传感器控制在没有速度传感器的情况下,通过观察观测异步电机磁链,在观测磁链定向的同步坐标系中控制电机电压,能够很有效地解决了异步电机低速性能[1]。观测器作为投入误差闭环的方法,对于动态性能和鲁棒性能都有了显著的提高。并且观测磁链也可以对些许电机参数和转动速度进行辨别识别,这将是无速度传感器的一个特长。矢量控制与直接转矩控制决定了异步电机的高强度性能控制,增加了电机由低到高速区的性能,市面上应用于Digital control、电子汽车等工业高能场所。所以开启研究Luenburger,用于改善感应电机的控制性能是十分有意义的研究。
全阶磁链观测器英文名称是Luenburger,电机正在处于运行状态时,模拟电机运行状态,既可以对于转动速度进行识别辨别功能,又可以对于磁链观测的成果进行预测。本文将以全阶磁链观测器的反馈矩阵设计、转动速度自适应律设计以及在无速度传感器控制系统中的Luenburger(下文将全阶磁链观测器写为Luenburger)在各个领域内的重点研究进行全面深入的讨论。
对于电机转动速度在辨别识别得到的情况下,对Luenburger的反馈矩阵进行了设计,磁链观测器的特征函数代表了磁链观测器在电流模型磁链观测器与电压模型磁链观测器之间切换的平滑程度,从双时间尺度出发,Luenburger可以分解为转动速度辨别识别系统与磁链观测系统[1]。本文分析了反馈矩阵对于Luenburger的特征函数还有转动速度辨别识别系统与磁链观测系统的性能,研究分析反馈矩阵对其产生的影响,提出了一种新的反馈矩阵设计方法。
要分析究竟是什么会干扰影响Luenburger的稳定稳固性,实际上干扰影响观测器稳定稳固性的最主要的原因是全阶磁链观测器的转动速度自适应律这个根本原由。下文对于传统磁链观测器进行了研究,通过自适应理论推导得到了不稳定原由,根据不稳定特征提出了低速回馈发电状态下的转动速度自适应律设计准则,零频率状态下注入低频电流,介绍了获取与磁场位置误差相关的感应电压原理,研究了辨别识别转动速度误差与磁场位置误差的关系,给出了利用感应电压设计的转动速度自适应律[1]。
Luenburger是无传感器感应电机驱动器的有前途的通量估算器。它具有良好的性能和抗参数灵敏度和测量噪声的鲁棒性。提出了一种全阶观测器,它使用定子和转子磁通作为各自参考系中的状态变量,测量转子速度是必需的。
关键词:Luenburger 反馈矩阵 转动速度自适应律 无速度传感器控制
The Design of Electric System of HuaiAn Ancient Yellow River Hotel
Abstract
The previous V/F control method of the asynchronous motor is easy to implement, simple in mechanism and strong in robustness. However, the asynchronous motor has some weakening in the low rotational speed region, for example, the load capacity is weak, the dynamic response is slow, and the rotational speed accuracy is low. And so on [1]. The most important problem of speed sensorless vector control technology is the observation of the motor flux linkage, scalar control and speed sensorless control. In the absence of speed sensor, observe the observation of the asynchronous motor flux linkage, and observe the flux linkage oriented synchronous coordinate system. By controlling the motor voltage, the problem of low speed performance of the asynchronous motor can be effectively solved. As a closed-loop method of input error, the observer has significantly improved dynamic performance and robust performance. And observing the flux linkage can also identify and identify some motor parameters and rotational speed, which will be a special feature of the speed sensor. Vector control and direct torque control determine the high-intensity performance control of the asynchronous motor, which increases the performance of the motor from low to high speed. It is used in industrial high-energy places such as Digital control and electronic vehicles. So the wife's to improve the control performance of induction motor is of great significance.
The English name of the Luenburger is Luenburger. When the simulated motor is running, the motor running state can be simulated, and the results of the rotational speed discrimination and prediction flux linkage observation can be achieved at the same time.This paper studies the full order flux observer design, speed feedback matrix adaptive law is designed, and the application of Luenburger algorithm. (hereinafter the Luenburger is abbreviated as LUENBURGER)In the speed sensorless control system is the main content. Comprehensive and in-depth research.
The feedback matrix of the Luenburger is designed for the recognition of the motor rotation speed. The characteristic function of the flux observer represents the smoothness of the flux observer switching between the current model flux observer and the voltage model flux observer. From the dual time scale, the Luenburger can be decomposed into a rotational speed discrimination recognition system and a flux linkage observation system [2]. This paper studies the feedback matrix to FFO characteristic function. and the performance of rotational speed discrimination recognition system and flux linkage observation system is analyzed. A new feedback matrix design method is proposed.
An adaptive law is speed have great influence to the stability of the observer. The stability of the traditional flux observer is studied below, and the instability is derived by adaptive theory. According to the unstable characteristics, the design rule of the rotational speed adaptive law in the state of low-speed feedback power generation is proposed. Injecting low-frequency current in zero-frequency state, the principle of obtaining induced voltage related to magnetic field position error is introduced. The relationship between discriminating and recognizing rotational speed error and magnetic field position error is studied. The adaptive law of rotational speed based on induced voltage is given.
The Luenburger is a promising flux estimator for sensorless induction motor drives. It has good performance and robustness against parameter sensitivity and measurement noise. A full-order observer is proposed which uses stator and rotor flux as state variables in the respective reference frames, and measurement of rotor speed is necessary.
Keywords:Luenburger;Feedback matrix;Speed adaptive law; Speed sensorless control
目 录
摘 要 I
ABSTRACT III
第一章 绪论 1
1.1 研究背景及意义 1
1.2 全阶磁链观测器研究情况 2
1.3 近年关于无速度传感器矢量控制研究 3
1.4 本文主要内容 3
第二章 全阶磁链观测器反馈矩阵设计 4
2.1 全阶磁链观测器概述 4
2.1.1 异步电机数学模型 4
2.1.2 全阶磁链观测器数学模型 6
2.1.3 全阶磁链观测器转动速度获取 7
2.2 反馈矩阵对全阶磁链观测器的影响分析 8
2.2.1 反馈矩阵对特征函数的影响 8
2.2.2 对转动速度辨别识别的影响 9
2.2.3 反馈矩阵对磁链观测影响 10
2.3 反馈矩阵设计 13
2.3.1 改善Luenburger平滑切换的反馈矩阵 13
第三章 转动速度自适应律设计 14
3.1 传统转动速度自适应律分析 14
3.1.1 分析传统转速自适应律的Luenburger的稳定性 15
3.1.2 全阶磁链观测器不稳定原因 17
3.2 回馈状态下的转速自适应律设计 18
3.2.1 转动速度自适应律设计基础 18
3.2.2 转动速度自适应律设计准则 19
第四章 仿真分析结果 23
参考文献 25
致 谢 26