图论在数学竞赛中的应用
无需注册登录,支付后按照提示操作即可获取该资料.
图论在数学竞赛中的应用(论文10000字)
摘要:图论问题一直是组合数学中比较独特的一部分,它不仅考察计算能力,分析能力,还包括作图能力等多方面的能力。一直以来,图论问题都可以作为一种题型出现在数学竞赛中。从图论的层面出发,可以给我们提供许多不同的解题思路和技巧,本文,我结合了数学竞赛中出现的图论题目,像欧拉回路问题,汉密尔顿回路问题,匹配问题和着色问题这些题型,分析了它们的常规解法,并做一定的总结。最后再从地图染色问题出发,归纳地图染色问题的各种情形,证明五色猜想,用编程方式实现四色定理。并给出判断一张地图是否只需要三种颜色就可以染色的简单判断方式。
关键字:数学竞赛 图论解题方法 地图染色
Graph Theory in Mathematicalcompetition
Abstract:Graph theory has always been a unique part of combination of mathematics for a long time ,because it investigates not only computing skills, analytical skills, but also graphing capability, and many other capabilities. It has been indispensablein the mathematical competition. From graph theory level, it can provide us with many different skills and problem-solving ideas,in this article, I combine the mathematics competition appearing in graph theory topics, including Euler problem, Hamilton circuit problem, matching and coloring problems, analyze them about their conventional solution, and make certain conclusion. Finally I will extend to the map coloring problemfrom the foundation of the coloring problem, induction map coloring problem in a variety of situations, proof five-colorconjecture,and achieve four color theorem programmatically ,the last part is about how to judge whether a given map can be dyed in only three colors.
Keywords:Mathematical competitionGraphTheory Problem-solving methodsMap dyeing
目 录
一引言 1
二图论和数学竞赛的介绍 1
2.1图论的介绍 1
2.2数学竞赛的介绍 1
三数学竞赛中的图论问题 2
3.1欧拉问题在数学竞赛中的应用 2
3.2汉密尔顿圈在数学竞赛中的应用: 3
3.3匹配问题在数学竞赛中的应用 4
3.4着色问题在数学竞赛中的应用 6
3.4.1棋盘染色问题 6
3.4.2几何染色问题 7
3.4.3地图染色问题 8
3.4.4五色定理的证明 9
3.4.5四色定理的实现 10
四总结 12
参考文献 13
五致谢 13
附录 14