压缩传感信号重建及FPGA实现
无需注册登录,支付后按照提示操作即可获取该资料.
压缩传感信号重建及FPGA实现(任务书,开题报告,外文翻译,论文18000字)
摘要
随着信息技术的不断发展,我们需要获取的信息量也越来越大,但是传统的香农定理以及奈奎斯特定理虽然可以很准确的对信号进行采样,但这种采样使得采样出来的数据十分的庞大,不管是在信息的存储、传输或者是重建方面都有很消极的影响。因此提出了压缩感知的思想,这个也是本次设计需要重点讨论的问题。但目前的压缩感知的实现都是软件实现,这也就显现出了一个大问题,软件实现需要的时间开销是很多的,它需要和底层硬件进行很多的交互,这些的交互都需要时间。因此本设计就考虑使用FPGA来实现这种算法,FPGA作为一个新兴的技术方向,近年来越来越多的设计用到它。当然其中还有很多的细节问题,比如一个大型的矩阵如何更快更准确的求解逆矩阵,这就涉及到矩阵的分解,其中比较关键的是Givens变换,这也将是重点讨论的问题。
关键词:压缩传感、正交匹配追踪、FPGA、Givens变换
Abstract
With the continuous development of information technology, we need more and more large amount of information, but although the traditional Shannon theorem and Nyquist theorem can be very accurate sampling of the signal, but this makes the sampling sampling out of data is very large, whether it is in the information storage, transmission or has a negative effect reconstruction. Therefore, the idea of compressed sensing is put forward, which is also the key point of this design. But the realization of compressed sensing current is the software, which also appears to be a big problem, the software overhead of time is a lot, a lot of interaction and it requires the underlying hardware, these interactions need time. Therefore, this design takes into account the use of FPGA to achieve this algorithm, FPGA as an emerging technology direction, in recent years more and more design used it. Of course, there are many details, such as how to solve a large matrix faster and more accurate inverse matrix, which involves decomposition of matrix, the key is the Givens transform, which will also be the focus of discussion.
Keywords: compression sensing, orthogonal matching pursuit, FPGA, Givens transform
目录
第1章绪论 1
1.1 研究背景及意义 1
1.2 论文章节安排 2
第2章压缩传感信号重建理论 3
2.1 稀疏表示 4
2.1.1 小波变换 6
2.2 传感矩阵 9
2.3 重构算法 10
2.3.1 凸优化算法 11
2.3.2 贪婪追踪算法 12
2.3.2 稀疏表示以及贪婪算法的应用 14
2.4 本章小结 17
第3章重建算法选择以及FPGA概述 18
3.1 重建算法的选择 18
3.2 FPGA概述 20
3.2.1 FPGA的数据格式 21
3.2.2 MATLAB和Modelsim联调 21
3.3 本章小结 22
第4章硬件实现及结果分析 23
4.1 算法硬件实现框架 23
4.1.1 寻找最相关列 24
4.1.2 最小二乘法 25
4.1.3 Givens变换 27
4.2 一维信号以及二维信号的重建 28
4.2.1 一维信号重建及其结果分析 28
4.2.2 二维信号重建及其结果分析 29
4.3 本章小结 29
第5章总结与展望 30
参考文献 31
致谢 33