一种广义凸函数的部分些性质研究
无需注册登录,支付后按照提示操作即可获取该资料.
一种广义凸函数的部分些性质研究(任务书,开题报告,论文9000字)
摘要
在工程、对策论、变分学、管理科学、纯粹数学、数理统计、应用数学以及在最优化理论等诸多重要领域中,凸函数众多特质之中的凸性和广义凸性体现了十分显著的重要性。这其中最重要的原因,在于非线性规划中的诸多非比寻常的特质凸函数均一一具备。打个比方,函数在某一点能够获取最小值,当满足条件凸集上可微凸函数在这一点的梯度向量为零;若集合为凸集,则定义于此集合上的凸函数局部极小值等价于全局极小值等。
正因为要突破理论,令它们在实践中更有价值与可利用性,于是推广广义凸函数十分具有必要性与可行性。本论文的意义在于,研究探讨凸函数的核心定义和性质,探讨及推广不变凸函数、s凸函数和F凸函数的某些性质。与此同时,为了获取更有核心价值的结论,本文深入地研究F凸函数的一些重要性质,并加以充分运用,推广了F凸函数的Hadamard不等式,并且推广得出它的一些等式和不等式性质。
关键词:凸函数;广义凸函数;Hadamard不等式
Abstract
The many qualities of convexity and generalized convex of convex function play the very significant important role in many important fields like the engineering, game theory, points, scientific management, pure mathematics, mathematical statistics, applied mathematics and optimization theory. One of the most important reasons is that unusual uniform convex function in nonlinear programming with many traits. Analogy function is in a point to obtain the minimum, while satisfying the conditions on convex sets can be micro convex function in the gradient vector is zero; if the set is a convex, convex function local minima value equivalence to the global minimum value is defined on the set, and so on.
It is necessary to break through the theory, so that they are more valuable and available in practice, so it is very necessary and feasible to extend the generalized convex function. The significance of this paper is to study the core definition and properties of convex function, and to explore the properties of the invariant convex function, s convex function and F convex function. At the same time, in order to obtain more core value of the conclusion, this paper deeply research some important properties of convex function f and make full use of it, generalized Hadamard inequality of convex function f, and generalize some of its properties equality and inequality.
Key words: convex function; generalized convex function; Hadamard inequality
目录
摘要 I
Abstract II
第1章 绪论¬¬¬ 1
1.1选题背景 1
1.2选题意义 3
1.3国内外研究现状、初步设想及拟解决的问题 4
第2章 凸函数的定义及性质 5
2.1凸函数的定义 5
2.2 凸函数的性质 5
2.2.1凸函数的线性性质 6
2.2.2 凸函数的解析性质 12
2.3本章总结¬¬¬ 12
第3章 凸函数的判定定理及Jensen不等式的证明¬¬¬ 13
3.1判定定理¬¬¬ 15
3.2 Jensen不等式及其证明¬¬¬ 16
3.3本章总结¬¬¬ 17
第4章S凸函数的性质与推广¬¬¬ 18
4.1 S凸函数与不变凸函数的性质 20
4.2 S-预不变凸函数Hadamard 型不等式 20
4.3本章总结¬¬¬ 21
第5章F凸函数的性质和它的Hadamard不等式 22
5.1 F凸函数的性质 22
5.2 F凸函数的Hadamard不等式推广 24
结论¬¬¬ 26
致谢¬¬¬ 27
参考文献¬¬¬ 29
附录 30